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The simplest version of the theory of plasticity is the theory of an in- 
compressible ideal isotropic rigid plastic body. In this case the plas- 
ticity condition is fixed. depending. generally speaking, on the second 
or third invariant of the stress deviator tensor. 

In the plane of the deviator of the principal stresses the plasticity 
condition is interpreted as a certain curve called the curve of plas- 
ticity. Well known generalizations of the theory of ideal plasticity con- 
sist in assumptions of the changes in form of the flow curve in depend- 
ence to the deformed state [ l-6 1, 

Changes in the flow limit during deformation characterize the strain- 
hardening materials, in which if the body remains isotropic under strain, 
the process is called isotropic strain-hardening. With isotropic strain- 
hardening the plasticity condition may depend upon the second or third 
invariants of the deviators of the stress and strain tensors. In this 
case the plasticity curve remains symmetrical relative to the axes of the 
principal stresses. 

If the flow limits for the different stresses do not coincide, then 
the material is anisotropic. One of the simplest versions of the theory 
of anisotropic strain-hardening was first proposed by Prager E 1 1, later 
investigated in [ 4-7 I, The flow curve is shifted as a whole, and the 
plasticity condition depends on mixed invariants of the deviators of the 
stress and strain tensors. We note the mechanical interpretation of the 
nature of anisotropic strain-hardening proposed in 15 I, which clarifies 
the role of microstresses in the framework of phenomenological theory. 

The relations of the theory of anisotropic strain-hardening are con- 
sidered here, including the special case obtained from the theory of 
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isotropic strain-hardening as well as Prager’s theory of anisotropic 
strain-hardening. The exposition is for the case of plane strain. 

The plasticity condition is assumed in the form 

f ( 227 23, I-3, I?3, T3, 7’3) = 0 
(1) 

Here x2, z, denote the second and third invariants of the deviator of 
the stress tensor u. .; r,. r3 denote the second and third invariants of 
the deviator of the’itrain tensor c . .; 
third invariants of the deviator of’ihe 

and T2, T, denote the second and 

c = c cr,, r31. 
tensor (a ij -, CC ij), where 

In accordance with this the associated law of plastic flow is 

Since 

where si = ai - u, 0 = 1/3(uw + uy + 0,). and the remaining invariants 
are written analogously, then 

de, = dh && (26, - Gy - Qz) + a& sysz -z;z ( + $22) + 
+~~~~[2(6~-ee,)-(6,--e~)-((51--e*)l+ 

af + aTj [ (% - ce,) (sz - ce,) - (zyz - CeJ + +Ts 1 . . 

+ =3 l(z,, - cex,) (ryr - ceyz) - (sz - ce,) &-- - CeJ = 09 . . . 

(4) 

The remaining expressions are obtained by successive permutation of 
indices. It is evident that the compressibility condition 6 x + c y + 
6 z = 0 holds. 

We consider the case of plane strain. We set 

eZ = eXL = eyz = 2,, = z yz = 0, 0, = (I, (G Y), Q = by (G Y) 
(5) 

zxy = =xy b, Y), sr = s, (5, ~1, sy = s, (xl ~1, sry = s,v (r, Y) 

From (4) for 6 z = 0 we have 
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(sx - ce,.. (sv - ce,) - (z,. - ce,,)z + f Ta I = 0 (6) 

The conditions E = 6 = ? = r 
is evident that undg: the’Eondi:fons {g) 

= 0 are satisfied identically. It 
and for 

the relation 

(J, = f (0, + a*) (7) 

ho1 ds. 

Xs = Ts = 0 

Condition (6) will be fulfilled if (7) holds, and also 

af at -= -- 
a aTa- for 2s = Ts = 0 

We shall assume in the sequel conditions that (7) and (8) are satisfied: 
the relations for the case of plane strain are written in the form 

The plasticity condition may be presented in the form 

where 

f ( &*, r~.*r T,‘) = 0 

-? l = $ (0% - UJ + Txy2, Aa r** = 

5”2* = $ [@, - CQ - (0, - ce,)P + (zxy - ce,,)a 

The star above and the index two are omitted in the following. 

We shall consider only the case of the plasticity condition in the 
form 

or 
T = T (l-) 

(9) 

(10) 

[(u, - ce,) - (uV - cs,)P + 4 (zxV - cs,,)’ = 4k2 0’) (11) 
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The relations (9) are written in the form 

The condition (11) is satisfied by the assumptions 

a,=o+ce,+kcos28, cr,,=~+cs,--kcos26, z ry = cc_, + k sin 28 (13) 

c2 
We now denote E 
+ y2. 

x 

Expressions (13) 

=--E =t,c 
Y XY 

= y. Then it is evident that r = 

are substituted in the equations of equilibrium 

($4) 

and we obtain 

aa a0 
- -2ksin2Qz +2kcos2Q + 
8X 

x 

$+2kcos2Q$+2ksin20$-c~+2 

Relations (12) are of the form 

de sin 28 - dy cos 26 = 0 (1’3 

Considering also the compatibility conditions 

($7) 

we obtain a system of five quasilinear equations (151, (16), (17) in the 
five unknowns u, 8, c , y, o. 

Let us investigate the type of this system. Upon denoting @f/c%, y) as 
the equation of the characteristic surface we set UP the characteristic 
determinant, It will have the form 

9 -2k($,sin20--ql, ~0~29) . . . . . . . . . . . . . . . 

% 2k($,cos26+$,sin28) . . . . . . . . . . . . . . . 

0 0 dt# sin 26 - d$ cos 28 0 =O 

0 0 - % % % 

0 0 -$92 -q/ 9’1, 

where $rz = a$/a~, 16; = a $/ay. 
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It is evident that the characteristic determinant is equal to the 

product of two diagonals of the second and third orders. Terms in the 

first and second parentheses show no effect on the determinant. These 

terms are zero for ideal plasticity. Assuming drj/f 0, k f 0, we obtain 

$x2 cos 20 + 2qX$, sin 26 cos 20 --$v2 cos 28 = 0 (18) 

The system is thus shown to be of the hyperbolic type, and the charac- 

teristics are mutually orthogonal. The nature of the strain-hardening 
appears in expressions which are generalized Hencky relations. Upon em- 

ploying a change of variables 

dg=dycos(O-_f)-dxsin(O--$-,c) 

dn=dycos(O+$n)-ddzsin(U+$n) 

we obtain, from (151, along the characteristics 

$ + 2/c+ - c [a+ cos 20 + 7$- sin 261 + 

+d$- [(r 
, 

cos 26 - s sin 28) -!C - (r sin 26 f s cos 26 + ar 1 
% > 

= 0 cm 

-@+2h+n+c ~cos20+~sin26]+ 
I 
- a.? 

+$[( . Tsin26+ecos28+-$ 
) 

ar +(7eos20-esin28)$ 
3 1 =0 

We note certain special cases: for c = 0 we have the relations for 

isotropic strain-hardening; for k = const we have the relations given in 

[71; f or c = 0 and k = const we have the Hencky relations. 

Equation (16) is transformable into the Geiringer relation, thus con- 

firming the absence of elongations aiong the characteristics 

dU - Vd8 = 0, dV + U dfl = 0 (21) 

where II and V are displacement velocities along the characteristics. 

We introduce the angles p and v determining the direction of the axes 

of the stress and strain tensors in the xy plane 

We have 

%qJ 
tan 2v = ~ 

e* - ey 

o,=u’+ Zcos2,u, e, = r cos 2Y 

ol/ = c - Z cos 2& %I = - r cos 3v 

‘G r?J = Z sin 2p., & XY = r sin 2v 

(22) 
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We obtain from (13) and (22) 

X2 -j- p2 - 2 Zp cos2 (p - Y) = k2, p = rc (r) 

It is evident that the relation 2 = x(r) holds only if the directions 
of the principal axes of the stress and strain tensors coincide, p = v; 
otherwise the relation describes the stress history. Consideration of the 
theory of torsion presents no difficulty; in this case the third in- 
variant is also zero. The three-dimensional problem may be considered 
following the procedure indicated in [ 7 1 . 
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